
Akademos

98 - nr. 4(19), decembrie 2010  

MARKOV DECISION 
PROCESSES 

AND DETERMINING 
NASH EQUILIBRIA FOR 

STOCHASTIC 
POSITIONAL GAMES

PhD Dmitrii LOZOVANU
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extends the cyclic games and Markov decision 
problems with average and discounted optimization 
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1.  Introduction
In this paper we formulate and study a class of 

stochastic positional games applying the game-
theoretical concept to Markov decision problems with 
average and discounted costs optimization criteria. 
We consider Markov decision processes that may be 
controlled by several actors (players). The set of states 
of the system in such processes is divided into several 
disjoint subsets which represent the corresponding 
positions sets of the players. Each player has to 
determine which action should be taken in each state 
of his positions set in order to minimize his own 
average cost per transition or discounted expected total 
cost. The cost of system’s transition from one state to 
another in the Markov process is given for each player 
separately. In addition the set of actions, the transition 
probability functions and the starting state are known. 
We assume that players use only stationary strategies, 
i.e. each player in an arbitrary his position uses the 
same action for an arbitrary discrete moment of time. 
In the considered stochastic positional games we are 
seeking for a Nash equilibrium.

The main results we describe in this paper are 
concerned with existence of Nash equilibria in the 
considered games and elaboration of algorithms for 
determining the optimal stationary strategies of players. 
We show that Nash equilibria for the game model with 
average cost payoff functions of the players exists if 

an arbitrary situation generated by the strategies of 
players induces a Markov unichain. For the game 
model with discounted payoff function we show that 
Nash equilibria always exists. The obtained results 
can be easy extended for antagonistic game models 
of Markov decision problems and the corresponding 
conditions for existence of saddle points in such games 
can be derived.

The proposed approach for Markov decision 
processes can be extended for multi-objective decision 
problems with Stackelberg and Pareto optimization 
principles and the corresponding algorithms for 
determining the optimal solutions of problems in the 
sense of Stackenberg and Pareto can be developed.

2.  Stochastic Positional Games with Average 
Payoff Functions of Players

We consider a class of stochastic positional games 
that extends and generalizes cyclic games ([3],  [4]) and 
Markov decision problems with average and discounted 
optimization costs criteria ([9],  [12]). The considered 
class of games we formulate using the framework of 
Markov decision process  ),,,( cpAX   with a fi nite 
set of states X, a fi nite set of actions  A ,  a transition 

probability function  [0,1]: →×× AXXp   that 
satisfi es the condition 

AaXxpa
yx

Xy
,1,=,

and a transition cost function  R→× XXc :   

which gives the costs  yxc ,   of states transitions for the 
dynamical system when it makes a transition from the 

state  Xx ∈   to another state  Xy ∈ .
We consider the noncooperative game model with  

m   players in which m  transition cost functions are 
given 

,,1,2,=,: miXXci

where  i
yxc ,   expresses the cost of system’s transition 

from the state  Xx ∈   to  the state  Xy ∈   for the 

player  }.,{1,2, mi K∈  In addition we assume that 
the set of states X  is divided into  m   disjoint subsets  

mXXX ,,, 21 K   

,=(= 21 iXXXXXX jim ≠∀∅∩∪∪∪ K j,)

where  iX   represents the positions set of player  

},{1,2, mi K∈ .  So, the Markov process is controlled 

by m  players, where each player  },{1,2, mi K∈   

fi xes actions in his positions  iXx ∈ .  We consider 
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the stationary game model, i.e. we assume that each 
player fi xes actions in the states from his positions set 
using stationary strategies. The stationary strategies of 
players we defi ne as m  maps: 

;)(: 1
11 XxforxAaxs ∈∈→

;)(: 2
22 XxforxAaxs ∈∈→

.................................................

   
,)(: m

mm XxforxAaxs ∈∈→

where )(xAi  is the set of actions of player i  in the state 

iXx ∈ . Without loss of generality we may consider  

miXxAAxA i
ii ,1,2,=,|,|=||=|)(| K∈∀ .. In 

order to simplify the notation we denote the set of 
possible actions in a state Xx ∈  for an arbitrary 

player by )(xA .

A stationary strategy  ,is   },{1,2, mi K∈   in 

the state iXx ∈  means that at every discrete moment 

of time K0,1,2,=t  the player i  uses the action 

)(= xsa i . Players fi x their strategy independently 
and do not inform each other which strategies they use 
in the decision process.

If the players m,1,2,K   fi x their stationary 

strategies  msss ,,, 21 K ,  respectively, then we 

obtain a situation  ),,,(= 21 mssss K . This situation 
corresponds to a simple Markov process determined 

by the probability distributions )(
,

xis
yxp  in the states  

iXx ∈  for  mi ,1,2,= K . We denote )(= ,
s

yx
s pP  

the matrix of probability transitions of this Markov 

process. If the starting state  
0i

x   is given, then for 
the Markov process with the matrix of probability 
transitions sP  we can determine the average cost 

per transition  ),,,( 21

0

mi
x sssM K   with respect to 

each player  },{1,2, mi K∈  taking into account the 

corresponding matrix of transition costs )(= ,
i

yx
i cC .  

So, on the set of situations we can defi ne the payoff 
functions of players as follows: 

.,1,2,=),,,,(=),,,( 21

0

21

0
misssMsssF mi

ix
mi

ix KKK

In such a way we obtain a discrete noncooperative 

game in normal form which is determined by fi nite 

sets of strategies  mSSS ,,, 21 K  of m   players and 
the payoff functions defi ned above. In this game we are 
seeking for a Nash equilibrium ([8]), i.e. we consider 
the problem of determining the stationary strategies  

**1**1*2*1 ,,,,,,, miii ssssss KK +−

such that

≤+− ),,,,,,( **1**1*2*1

0

miiii

ix ssssssF KK

.,1,2,=,),,,,,,,( **1*1*2*1

0
miSsssssssF iimiiii

ix KKK ∈∀≤ +−

The game defi ned above is determined 
uniquely by the set of states  X ,  the positions sets  

mXXX ,,, 21 K ,  the set of actions  A ,  the cost 

functions  ,,1,2,=,: miXXci KR→×   the 

probability function  [0,1]: →×× AXXp   and 

the starting position  
0i

x . Therefore we denote it 

).,,}{,}{,,(
01,=1,= imi

i
mii xpcXAX  We call this 

game stochastic positional game with average payoff 
functions.

In the case AaXyxpa
yx ,,1,0=,   the 

stochastic positional game is transformed into the 
cyclic game studied by [3],  [5].

3. Determining Nash Equilibria for Stochastic 
Positional Games with Average Payoff Functions

 To provide the existence of Nash equilibria for 
the considered stochastic positional game we shall 
use the following condition. We assume that an 

arbitrary situation  ),,,(= 21 mssss K  of the game 
generates a Markov unichain with the corresponding 

matrix of probability transitions )(= ,
s

yx
s pP . The 

Markov process with such property with respect to the 

situations Sssss m ∈),,,(= 21 K  of the game we 
call perfect Markov decision process. We show that in 
this case the problem of determining Nash equilibria 
for a stochastic positional game can be formulated as 
continuous model that represents the game variant of 
the following optimization problem:

Minimize

           xaxax
xAaXx

qsqs ,,
)(

=),(             (1)

 subject to
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),(,0,

;1,=

1;=

;,=

,
)(

,
)(

,,
)(

xAaXxs

Xxs

q

Xyqqsp

ax
xAa

ax
xAa

x
Xx

yxax
a

yx
xAaXx

       (2)

 where 
a

yxyx
xXy

ax pc ,,
)(

, =

is the immediate cost in the state  Xx ∈   for a fi xed 

action  )(xAa ∈ .
It is easy to observe that the problem (1), 

(2) represents the continuous model for Markov 
decision problem with average cost criterion. 
Indeed, an arbitrary stationary strategy AXs →:  
can be identifi ed with the set of boolean variables 

)(,{0,1},, xAaXxs ax ∈∈∈  that satisfy the 
conditions 
 

.,0,;1,= ,,
)(

AaXxsXxs axax
xAa

These conditions determine all feasible solutions 
of the system (2). The rest restrictions in (2) 
correspond to the system of linear equations with 

respect to xq  for Xx ∈ . This system of linear 
equations refl ects the ergodicity condition for the 

limiting probability Xxqx ∈,  in the Markov 

unichain, where Xxqx ∈,  are determined uniquely 

for given )(,,, xAaXxs ax ∈∈∀ . Thus, the value of 
the objective function (1) expresses the average cost 
per transition in this Markov unichain and an arbitrary 

optimal solution ),(, **
, AaXxqs xax ∈∈  of problem 

(1), (2) with {0,1}*
, ∈axs  represents an optimal 

stationary strategy for Markov decision problem with 
average cost criterion. If such an optimal solution is 
known, then an optimal action for Markov decision 

problem can be found by fi xing )(= ** xsa  for 

Xx ∈  if 1=*
,axs .

The problem (1), (2) can be transformed into 
a linear programming problem using the notations  

α )(,,= ,, xAaXxqs xaxax ∈∈∀   (see [6]). Based on 
such transformation of the problem we will describe 
some additionally properties of the optimal stationary 

strategies in Markov decision processes.

 Let a Markov decision process  ),,,( cpAX  be 
given and consider the function  

,=)( ,,
)(

xaxax
xAaXx

qss

 where xq  for  Xx ∈   satisfy the condition 
 

       
1.=

;,=,,
)(

x
Xx

yxax
a

yx
xAaXx

q

Xyqqsp
       (3)

 Assume that an arbitrary stationary strategy  s   
in the Markov decision process generates a Markov 
unichain, i.e we have a perfect Markov decision 

process. Then the function  )(s   depends only on  

axs ,   for  )(, xAaXx ∈∈ , and on the set  S   of 
solutions of the system 

 

     ),(,0,

;1,=

,
)(

,
)(

xAaXxs

Xxs

ax
xAa

ax
xAa

      (4)

the function  ψ )(s   is monotone. 

Proof. In the perfect Markov decision processes an 
arbitrary basic solution of the system (4) corresponds to 
a stationary strategy that generates a Markov unichain. 
For such an arbitrary strategy the rank of system (3) 

is equal to || X  and (3) has a unique solution with 

respect to )( Xxqx ∈   (see [9, 12]). Moreover, in 
the mentioned references is shown that for Markov 
unichain the system of linear equations  (3)  uniquely 

determines  Xxqx ∈∀,    for an arbitrary solution of 
system (4).

Now let us prove the second part of the lemma. 
We show that on the set of solutions of system (4) 

the function ψ )(s   is monotone. For this reason it is 

suffi cient to show that for arbitrary Sss ∈′′′,  with  ψ

)()( ss   the following relation holds 
 

)}(),({max<)(<)}(),({min sssss

1.<<0,)(1= sss         (5)
 

We show that the relation (5) holds for an arbitrary  

),( ssSs ′′′∈ , where
)}(,},','{max<<}','{min|{=),( ,,,,, xAaXxssssssssS axaxaxaxax

if
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and the equations 

)(=)(),(=)( ssss

on the set 
)}(,},','{max}','{min|{=),( ,,,,, xAaXxssssssssS axaxaxaxax  

have the unique solutions  ss ′=   and  ss ′′= , 
respectively.

The correctness of this property we prove using the 
relationship of the problem (1), (2) with the following 
linear programming problem:

Minimize 

                   axax
xAaXx

,,
)(

=)(              (6)

subject to 

).(,0,

;,=

1;=

;,=

,

,
)(

,,
)(

xAaXx

Xxq

q

Xyqp

ax

xax
xAa

x
Xx

yax
a

yx
xAaXx

    (7)

The problem (6), (7) is obtained from (1), (2) 

introducing the substitutions  α xyxax qs ,, =   for  

)(, xAaXx ∈∈ . These substitutions allow us 
to establish a bijective mapping between the set of 
feasible solutions of the problem (1), (2) and the set of 
feasible solutions of the linear programming problem 

(6), (7). So, if α ax,  for )(, xAaXx ∈∈   and  )(   
are known then we can uniquely determine 

 

            )(,,= ,
, xAaXx

q
s

x

ax
ax                (8)

for which ).(=)(s  In particular, if an optimal 

basic solution  a **,q   of the linear programming 
problem (6), (7) is found, then the optimal stationary 
strategy for Markov decision problem can be found 
fi xing 

 

0.=0,
0;>1,

= *
,

*
,*

,
ax

ax
ax if

if
s

Let  ss ′′′,   be arbitrary solutions of the system 
(4) where )(<)( ss . Then there exist the 

corresponding feasible solutions ,   of the linear 
programming problem (6), (7) for which 

 

),(=)(),(=)( ss

),(,'=','=' ,,,, xAaXxqsqs xaxyxxaxax

where  xx qq ′′′ ,   are determined uniquely from the 

system of linear equations (3) for  ss ′=   and  ,= ss ′′   

respectively. The function  )(  is linear and therefore 

for an arbitrary  10,)(1=  the 
following equality holds 

),()(1)(=)(
where   is a feasible solution of the problem (6), 
(7), that in initial problem (1), (2) corresponds to a 

feasible solution  s   for which  

.,)(1=);(=)( Xxqqqs xxx
Using (8) we have 

 

),(,,= ,
, xAaXx

q
s

x

ax
ax

i.e.
 

=
)(1

')(1'
=

)(1
')(1'

= ,,,,
,

xx

xaxxax

xx

axax
ax

qq
qsqs

qq
s

.'
)(1

)(1'
)(1

= ,, ax
xx

x
ax

xx

x s
qq

qs
qq

q

So, we obtain  

,')(1'= ,,, axxaxxax sss
where 

1.0,
)(1

=
xx

x
x

qq
q

It is easy to observe that  10 x , were 

Xxx 0,=  if and only if  0=   and  

Xxx 1,=   if and only if 1= . This means 

that for an arbitrary ),( ssSs   the condition (5) 
holds and the equations 

)(=)(),(=)( ssss

on the set  ),( ssS ′′′   have the unique solutions  
ss ′=   and  ss ′′= , respectively. Thus the function  

)(s  on the set of solutions of system (4) is 
monotone. 

Now we extend the results described above for 
the continuous model of stochastic positional game 

if
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with average payoff functions. We consider the game 
model for perfect Markov decision processes.

Let denote by  }{1,2,, miS i K∈   the set of 
solutions of the system  

  
⎪
⎩

⎪
⎨

⎧

∈∈∀≥

∈∀

∑
∑

∈

∈

).(,0,

;1,=

,
)(

,
)(

xAaXxs

Xxs

ii
ax

xAa

ii
ax

xAa
       (9)

So, iS   is a convex compact set and its arbitrary 
extreme point corresponds to a basic solution  s′   of the 

system (9), where  ).(,{0,1},', xAaXxs iax ∈∈∀∈  
Thus, if  s′   is an arbitrary basic solution of system 

(9), then  is S∈′ .

On the set  mSSSS ××× K21=   we defi ne  m   
payoff functions 

 

,,1,2,=,=),,,( ,,
)(1=

21 miqssss x
i

ax
i

ax
xAaiXx

m

i

mi
 (10)

 
where 

a
yx

i
yx

Xy

i
ax pc ,,, =

is the immediate cost of player  },{1,2, mi K∈   in 

the state  Xx ∈  for a fi xed action  )(xAa ∈ ; xq   for  
Xx ∈   are determined uniquely from the following 

system of linear equations 
 

    
1=

;,=,,
)(1=

x
Xx

yx
i

ax
a

yx
xAaiXx

m

i

q

Xyqqsp

    (11)

when  msss ,,, 21 K   are given.
The main results we prove for our game model 

represent the following properties:
- The set of Nash equilibria situations of the 

continuous model is non empty if and only if the set 
of Nash equilibria situations of the game in positional 
form is not empty;

- If ),,,( 21 msss K  is an extreme point of 

S  then ),,,(=),,,( 2121 mmi
x ssssssF , 

miXx ,1,2.=, K∈∀  and all Nash equilibria 
situations for the continuous game model that 
correspond to extreme points in S  represent Nash 
equilibria situations for the game in positional form.

From Lemma 3 as a corollary we obtain the 
following result.

For perfect Markov processes each payoff 

function  ),,,,( 21 mi sss    },,2,{ mii K∈  possesses 

the property that ),,,,,,,(
1121 miiii ssssss   

is monotone with respect to  ii Ss ∈   for arbitrary 

fi xed .,1,1,,1,2,=, miikSs kk

Using this lemma we can prove the following 
theorem.  Let ),,}{,}{,,( 1,=1,= xpcXAX mi

i
mii   be 

a stochastic positional game with a given starting 
position Xx ∈  and average payoff functions 

),,,(,),,,,(),,,,( 21212211 mm
x

m
x

m
x sssFsssFsssF

of players  m,1,2,K , respectively.  If for 

an arbitrary situation  ),,,(= 21 mssss K   of the 

game the transition probability matrix  )(= ,
s

yx
s pP   

corresponds to a Markov uni-chain then for the stochas-

tic positional game ),,}{,}{,,( 1,=1,= xpcXAX mi
i

mii  

there exists Nash equilibrium  ),,,(= **2*1* mssss K
.  Moreover, for this game there exists a situation  

),,,(= **2*1* mssss K   which is a Nash-equilibrium 
for an arbitrary starting position  Xx ∈ .  

Proof. According to Lemma 3 each function  

},,2,{),,,,( 21 miisss mi   satisfi es the 

condition that  ),,,,,,,(
1121 miiii ssssss   

is monotone with respect to  ii Ss ∈   for arbitrary 

fi xed  .,1,1,,1,2,=, miikSs kk
 In 

the considered game each subset  iS   is convex and 
compact. Therefore these conditions (see [2],  [1],  [11] 
and [10]) provide the existence of Nash equilibrium 
for the functions },,2,{),,,,( 21 miisss mi  

on mSSS ××× K21 . Taking into account 
that S  is a polyhedron set and the functions  

),,,,,,,(
1121 miiii ssssss   are monotone 

we obtain that there exists a Nash equilibrium  
**2*1 ,,, msss K   that corresponds to a basic solution 

of the system (9). This means that  ),,,( **2*1 msss K   
is Nash equilibrium for the functions 

),,,(,),,,,(),,,,( 21212211 mm
x

m
x

m
x sssFsssFsssF KKKK

on the set of situations  .= 21 mSSSS ××× K  
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Using the results described above we may 
conclude that in the case of perfect Markov decision 
processes Nash equilibrium for stochastic positional 
games can be determined by using classical iterative 
methods for the continuous game models with payoff 

functions  },,2,{),,,,( 21 miisss mi   on 

the set mSSS ××× K21 . If we refer these iterative 
methods to discrete game model with payoff functions 

on mSSS ××× K21 , then we obtain the iterative 
procedures where players fi x successively their 
strategies in order to minimize their payoff functions, 
respectively, and fi nally to reach Nash equilibrium.

In general, for stochastic positional games with 
average payoff functions of players, Nash equilibrium 
may not exists if the stationary strategies do not generate 
Markov uni-chain. Moreover, Nash equilibrium 
may not exists even for deterministic positional 
games (see [3],   [5]). So, the Theorem 3 in the case 

{0,1}, ∈a
yxp , gives conditions for existence of Nash 

equilibria in cyclic games with average payoff 
functions.

4. Stochastic Positional Games with Discounted 
Payoff Functions of Players 

The stochastic positional game model for 
discounted Markov decision problem we formulate 
in a similar way as the game model from Section 2. 
We apply the game-theoretical concept to discounted 

Markov decision process  ),,,( cpAX   with given 

discounted factor  1<<0,  (see [9],   [12]). So, 
in for our game model we assume that m  transition 

cost functions  ,,1,2,=,: miXXci KR→×  
are given and the set of states X  is divided 

into  m   disjoint subsets  mXXX ,,, 21 K , 

where  iX   represents the positions set of player 

},{1,2, mi K∈ .  Thus, the Markov process 
is controlled by m  players, where each player  

},{1,2, mi K∈   fi xes actions in his positions  iXx ∈  
using stationary strategies. The stationary strategies of 
players in this game we defi ne as m  maps: 

.,1,2,=;)(: miXxforxAaxs i
i K∈∈→

Let  msss ,,, 21 K   be a set of stationary 
strategies of players that determine the situation  

),,,(= 21 mssss K . Consider the matrix of 

probability transitions )(= ,
s

yx
s pP  which is induced 

by the situation  s, i.e. each row of this matrix 

corresponds to probability distributions  )(
,

xis
yxp   in the 

state  x   were  iXx ∈ . If the starting state  0x   is 
given, then for the Markov process with the matrix 
of probability transitions  sP   we can determine the 

discounted expected total cost  ),,,( 21

0

mi
x sss    

with respect to each player  },{1,2, mi K∈   taking 
into account the corresponding matrix of transition 

costs  )(= ,
i

yx
i cC .  So, on the set of situations we can 

defi ne the payoff functions of the players as follows: 
.,1,2,=),,,,(=),,,( 21

0

21
0 missssssF mi

x
mi

x

In such a way we obtain a new discrete 
noncooperative game in normal form which is 

determined by the sets of strategies  mSSS ,,, 21 K  
of m   players and the payoff functions defi ned above. 
In this game we are seeking for a Nash equilibrium.

This game is determined uniquely by the 

set of states X, the positions sets mXXX ,,, 21 K   
the set of actions A, the cost functions  

,,1,2,=,: miXXci KR→× ,  the probability 

function  [0,1]: →×× AXXp   the discounted 
factor  γ  and the starting position  0x . Therefore we 
denote it ).,,,}{,}{,,( 01,=1,= xpcXAX mi

i
mii  We call 

this game stochastic positional game with discounted 
payoff functions .

5.  Determining Nash Equilibria for Stochastic 
Positional Games with Discounted Payoff 
Functions

In this section we show that Nash equilibrium 
exists for an arbitrary stochastic positional game with 
discounted payoff functions of the players and given 

discounted factor  1.<<0,  To prove this result 
we shall use a continuous game which represent the 
game model for the following continuous optimization 
problem: 

Maximize 
                      

00
=),( xx s                   (12)

subject to 

),(,0,

;1,=

,=

,

,
)(

,,
)(

,,
)(

xAaXxs

Xxs

Xxsps

ax

ax
xAa

axax
xAa

y
a

yxax
xAaXy

x

(13)

where 

.= ,,,
a

yx
a

yx
Xy

ax cp
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This problem represents the continuous model 
for discounted Markov decision problems (see [7]). 
Based on this model we can determine the optimal 
stationary strategy of the discounted Markov decision 
problem for an arbitrary starting state Xx ∈ . In (13) 

the system of linear equations with respect to  σ x   has 
a unique solution and therefore the objective function 
(12) on the set of feasible solutions depends only on 
s . It is easy to observe that these equations in (13) 

can be changed by inequalities )(≤ . If after that we 

dualize (12), (13) with respect to  σ x   for fi xed  s   
then we obtain the following problem:

Minimize 

         xaxax
xAaXx

ss ,,
)(

=),(           (14)

subject to  

).(,0,;0

;1,=

;=1

};{\0,

,

,
)(

0,,
)(

0,,
)(

xAaXxsXy

Xxs

xyforsp

xXysp

axy

ax
xAa

xax
a

yx
xAaXx

y

xax
a

yx
xAaXx

y

 (15)

Using elementary transformations in 
this problem and introducing the notations  

)(,,= ,, xAaXxs xsxax   we obtain the 
following linear programming problem:

Minimize 

            axax
xAaXx

s ,,
)(

=),(
          

 (16)

subject to 

).(,0,;0,

;,=

;=1

};{\0,

,

,
)(

0,,
)(

0,,
)(

xAaXxXy

Xx

xyforp

xXyp

axy

xax
xAa

ax
a

yx
xAaXx

y

ax
a

yx
xAaXx

y

 (17)

If ),( **  is an optimal basic solution of problem 

(16), (17) then the optimal stationary strategy  *s   for 
the discounted Markov decision problem is determined 
as follows: 
 

                  0.=0,
;01,

= *
,

*
,*

,
ax

ax
ax if

if
s             (18)

and  ).(,,= **
,

*
, xAaXxs xaxax

It is easy to observe that  Xxx 0,>   if 
for the considered Markov decision process there 

exists an action )( 0xAa ∈  such that Xxp yx 0,>,0  
Without loss of generality we may assume that 
such condition for our problem holds; otherwise 

we can add a fi ctive action  a′   in the state  0x   
for which  1)=(0,> ,,

a
yx

Xy

a
yx pXyp   and  

,,=,0
XyKca

yx ∈∀′
 where  K   is a suitable big 

value.
For continuous model of discounted Markov 

decision problem we prove a similar properties as 
for average Marcov decision model.  Let a Markov 

decision process  ),,,( cpAX  with discounted factor  

1<<0,   be given.  Consider the function 

,=)(
00 xx s

where x  for Xx ∈   satisfy the condition 
 

.,= ,,
)(

,,
)(

Xxsps axax
xAa

y
a

yxax
xAaXy

x  (19)

Then the function  )(
0

sx   depends only on  axs ,  

for )(, xAaXx ∈∈ , and on the set S  of solutions 
of the system 

)(,0,
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,
)(

,
)(

xAaXxs

Xxs

ax
xAa

ax
xAa

the function  φ )(s   is monotone.  The proof of this 
lemma is similar to the proof of Lemma 3.

The continuous game model with  m   players for 
discounted Markov decision problem we formulate as 

follow: on the set  mSSSS ××× K21=   we consider  
m    payoff functions functions 

,,1,2,=,=),,(
0

21

0
misss i

x
mi

x

where  σ i
x  for Xx ∈   satisfy the conditions 
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yx

k
ax
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This game model possesses the same property as 
the previous continuous model:

-The set of Nash equilibria situations of the 
continuous model is non empty if and only if the set 
of Nash equilibria situations of the game in positional 
form is not empty;

- If  ),,,( 21 msss K  is an extreme point of 

S  then ),,,(=),,,( 2121 mmi
x ssssssF , 

miXx ,1,2.=, K∈∀  and all Nash equilibria 
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situations for the continuous game model that 
correspond to extreme points in S  represent Nash 
equilibria situations for the game in positional form.

From Lemma 5 as a corollary we obtain the 
following result.  For an arbitrary discounted 
Markov decision process each payoff function  

),,,,( 21

0

mi
x sss },,2,{ mii    possesses the 

property that  ),,,,,,,(
1121

0

miiii
x ssssss   is 

monotone with respect to  ii Ss ∈   for arbitrary fi xed  

.,1,1,,1,2,=, miikSs kk
  Using 

this lemma we can prove the following theorem.  Let  

),,,}{,}{,,( 1,=1,= xpcXAX mi
i

mii   be a stochastic 
positional game with a given starting position  Xx ∈   
and discounted payoff functions 

),,,(,),,,,(),,,,( 21212211 mm
x

m
x

m
x sssFsssFsssF

of players  m,1,2,K , respectively. Then in 
the considered game there exists Nash equilibrium  

),,,(= **2*1* mssss K .  Moreover, in this game there 

exists a situation  ),,,(= **2*1* mssss K   which is a 
Nash-equilibrium for an arbitrary starting position  

Xx ∈ .  The proof of this theorem is similar to the 
proof of Theorem 3.

 It is evident that the result described above can be 
used for studying and solving stochastic antagonistic 
positional games. The corresponding conditions for 
existence of saddle points in antagonistic positional 
games with average and discounted payoff functions 
can be derived from Theorems 3, 5, respectively. The 
computational complexity aspects concerned with 
determining the optimal stationary strategies of players 
for deterministic positional games are analyzed in [5].

6. Conclusion
In this paper a new class of stochastic positional 

games that extend the well known deterministic and 
stochastic positional games is studied. A new results 
concerned with existence of Nash equilibria for the 
game models of Markov decision problems with 
average and discounted costs optimization criteria 
are obtained. Based on these results the problem of 
determining the optimal stationary strategies of players 
in the considered games can be reduced to continuous 
similar problems for which classical numerical 
methods can be applied. The described results may be 
useful for elaboration of suitable iteration procedures 
of determining the optimal stationary strategies in 
positional games.
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