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1. Introduction

In this paper we formulate and study a class of
stochastic positional games applying the game-
theoretical concept to Markov decision problems with
average and discounted costs optimization criteria.
We consider Markov decision processes that may be
controlled by several actors (players). The set of states
of the system in such processes is divided into several
disjoint subsets which represent the corresponding
positions sets of the players. Each player has to
determine which action should be taken in each state
of his positions set in order to minimize his own
average cost per transition or discounted expected total
cost. The cost of system’s transition from one state to
another in the Markov process is given for each player
separately. In addition the set of actions, the transition
probability functions and the starting state are known.
We assume that players use only stationary strategies,
i.e. each player in an arbitrary his position uses the
same action for an arbitrary discrete moment of time.
In the considered stochastic positional games we are
seeking for a Nash equilibrium.

The main results we describe in this paper are
concerned with existence of Nash equilibria in the
considered games and elaboration of algorithms for
determining the optimal stationary strategies of players.
We show that Nash equilibria for the game model with
average cost payoff functions of the players exists if
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an arbitrary situation generated by the strategies of
players induces a Markov unichain. For the game
model with discounted payoff function we show that
Nash equilibria always exists. The obtained results
can be easy extended for antagonistic game models
of Markov decision problems and the corresponding
conditions for existence of saddle points in such games
can be derived.

The proposed approach for Markov decision
processes can be extended for multi-objective decision
problems with Stackelberg and Pareto optimization
principles and the corresponding algorithms for
determining the optimal solutions of problems in the
sense of Stackenberg and Pareto can be developed.

2. Stochastic Positional Games with Average
Payoff Functions of Players

We consider a class of stochastic positional games
that extends and generalizes cyclic games ([3], [4]) and
Markov decision problems with average and discounted
optimization costs criteria ([9], [12]). The considered
class of games we formulate using the framework of

Markov decision process (X, A4, p,c) with a finite

set of states X, a finite set of actions A, a transition

probability function p:XxXxA4—[0,1] that
satisfies the condition

Zp;”y =1, Vxe X, YVae 4

yeX
and a transition cost function c¢:XxX —>R

which gives the costs €y, of states transitions for the
dynamical system when it makes a transition from the

state x € X toanotherstate ye X .

We consider the noncooperative game model with
m players in which m transition cost functions are
given

¢ XxX-oR,i=1.2,...m,

where Ci’y expresses the cost of system’s transition
from the state x € X to thestate ye€ X forthe

player i€ {1,2,...,m} In addition we assume that
the set of states X is divided into m disjoint subsets

X, Xy X

m

X=X,uX,u..VX, (X,nX,=0, Vi#])
where X, represents the positions set of player
ie{l,2,...,m}. So,the Markov process is controlled
by m players, where each player i€ {l,2,...,m}

fixes actions in his positions x € X,. We consider
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the stationary game model, i.e. we assume that each
player fixes actions in the states from his positions set
using stationary strategies. The stationary strategies of
players we define as m maps:

s'ix—>aed(x) for xeX;

s’:x—>aeA(x) for xelX,;
s":x—>aeA"(x) for xeX,,

where A'(x) isthe set ofactions of player i in the state
x € X,. Without loss of generality we may consider

|A'(x)|=| A" |=| 4} Vxe X,,i=1,2,...,m . In
order to simplify the notation we denote the set of
possible actions in a state x € X for an arbitrary
player by A(x).

A stationary strategy s', ie{l1,2,...,m} in
the state x € X, means that at every discrete moment
of time #=0,1,2,... the player i uses the action

a=s'(x). Players fix their strategy independently
and do not inform each other which strategies they use
in the decision process.

If the players 1,2,...,m fix their stationary
sh,s%, 8",

strategies respectively, then we

obtain a situation s = (s',5°,...,5™). This situation
corresponds to a simple Markov process determined

s (x)

by the probability distributions p, /™ in the states

xe X, for i=12,...,m. We denote P° =(p; )
the matrix of probability transitions of this Markov

process. If the starting state X, is given, then for
the Markov process with the matrix of probability

transitions P° we can determine the average cost
per transition M )’;0 (s',s%,...,8™) with respect to
each player i€ {1,2,...,m} taking into account the

corresponding matrix of transition costs C'=(c;,).
So, on the set of situations we can define the payoff
functions of players as follows:

FXI, (sl,sz,...,s’”)=Mii (s',s%,...,8™) i=12,....m.
0 0

In such a way we obtain a discrete noncooperative
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game in normal form which is determined by finite

sets of strategies S',S%,...,S™ of m players and
the payoff functions defined above. In this game we are
seeking for a Nash equilibrium ([8]), i.e. we consider
the problem of determining the stationary strategies

S L8 S s s LS
such that

* * * *
i 1 2 i—1 i i+l
in (5,8 ,....87 8" 87 ...
0

<Fi [ i1 i i m* Vs eS. i=1.2
< Xl_o(s ST s stsT L sT) WsteS, i=1,2,...,m.

The defined
uniquely by the set of states X, the positions sets

game above is determined

X,,X,,...,X, , the set of actions A, the cost
functions ¢ XxX >R, i=12,...,m, the
probability function p:XxXxA—[0,1] and

the starting position X Therefore we denote it

(X, 4, {Xi}i:ﬁ,a {Ci}i:ﬁ’ P, xio) We call this
game stochastic positional game with average payoff
functions.

In the case p{ =0vl, Vx,ye X,Vae 4 the
stochastic positional game is transformed into the
cyclic game studied by [3], [5].

3. Determining Nash Equilibria for Stochastic
Positional Games with Average Payoff Functions

To provide the existence of Nash equilibria for
the considered stochastic positional game we shall
use the following condition. We assume that an

arbitrary situation s =(s',s°,...,s™) of the game
generates a Markov unichain with the corresponding

matrix of probability transitions P° =(p; ). The
Markov process with such property with respect to the

situations s =(s',5°,...,8") €S of the game we
call perfect Markov decision process. We show that in
this case the problem of determining Nash equilibria
for a stochastic positional game can be formulated as
continuous model that represents the game variant of
the following optimization problem:

Minimize
W=D D HeuSeads (1)
xeXaeA(x)
subject to
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D pis.g,.=4q,, VyeX;

xeXacA(x)

D, =1;

xeX
D s, =1 VxelX; (@)
acA(x) |
Z 5,.20,Vxe X, ae A(x),
acA(x)
where

— a
:le,a - Z CX,ypx,y

yeX T (x)
is the immediate cost in the state x € X for a fixed

action a € A(x).

It is easy to observe that the problem (1),
(2) represents the continuous model for Markov
decision problem with average cost criterion.

Indeed, an arbitrary stationary strategy s: X — A4
can be identified with the set of boolean variables

S..€10,1}, xe X,ae A(x)

conditions

that satisfy the

Z s..=1l, VxelX;s ,20,VxeX,ae A
acA(x)
These conditions determine all feasible solutions
of the system (2). The rest restrictions in (2)
correspond to the system of linear equations with

respect to g, for xe X . This system of linear
equations reflects the ergodicity condition for the

limiting probability g ,xe€ X in the Markov

unichain, where g _,x € X are determined uniquely

for given s, Vx € X,a € A(x). Thus, the value of
the objective function (1) expresses the average cost
per transition in this Markov unichain and an arbitrary

optimal solution s;a, q. (xe X,ae A) of problem

(1), (2) with S;’a €{0,1} represents an optimal
stationary strategy for Markov decision problem with
average cost criterion. If such an optimal solution is
known, then an optimal action for Markov decision

problem can be found by fixing @ =5"(x) for

xeX ifs;a =1.
The problem (1), (2) can be transformed into
a linear programming problem using the notations

O,y =5,44,, VX € X,ae A(x) (see[6]). Based on
such transformation of the problem we will describe
some additionally properties of the optimal stationary
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strategies in Markov decision processes.

Let a Markov decision process (X, 4, p,c) be
given and consider the function

l//(S) = z Z lux,asx,a qx’

xeXacA(x)

where g for x € X satisfy the condition

Z Z p;z,ysx,aqx :qya vyEX,
xeXaeA(x) (3)

qu =1.

xeX
Assume that an arbitrary stationary strategy s

in the Markov decision process generates a Markov
unichain, i.e we have a perfect Markov decision

process. Then the function ¥(s) depends only on

s.. for xe X,ae A(x), and on the set S of

x,a

solutions of the system

Z Sea =1, VxelX;
acA(x)
Z 5..20,Vxe X, ae A(x), ()

X
acA(x)
the function y (§) is monotone.

Proof. In the perfect Markov decision processes an
arbitrary basic solution of the system (4) corresponds to
a stationary strategy that generates a Markov unichain.
For such an arbitrary strategy the rank of system (3)

is equal to | X | and (3) has a unique solution with

respect to g, (x€ X) (see [9, 12]). Moreover, in
the mentioned references is shown that for Markov
unichain the system of linear equations (3) uniquely

determines g _,Vx e X for an arbitrary solution of
system (4).

Now let us prove the second part of the lemma.
We show that on the set of solutions of system (4)
the function y(s) is monotone. For this reason it is
sufficient to show that for arbitrary s',s" € S with v

w(s)2y(s") the following relation holds

min{y(s'), y(s")} <y (s) < max{y (s'),y (s")}
if
- — ’ " (5)
s=0s"'+(1-0)s", 0<O<I.
We show that the relation (5) holds for an arbitrary

se S(s',s"), where

S(s',s")={s|min{s, "5, "} <s,, <max{s ',s "}, Vxe X,ae A(x)}
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and the equations
w(s)=y(s), w(s)=w(s")

on the set
S(s',s")={s| min{s,,',s "} <5, <max{s,',s, "}, Vxe X,ae A(x)}
have the unique solutions s=s" and s=s",

respectively.
The correctness of this property we prove using the
relationship of the problem (1), (2) with the following

linear programming problem:

Minimize
w(a)= > u,a,, ©)
xeXaeA(x)
subject to
if .
> Y pa, =g, YeX:
xeXaecA(x)
4. =1
xeX (7)
Zax,a:qx: VXEX;
acA(x)
a,,20, Vxe X,ae A(x).

The problem (6), (7) is obtained from (1), (2)

introducing the substitutions o, , =s g, for

xe X,ae A(x). These substitutions allow us
to establish a bijective mapping between the set of
feasible solutions of the problem (1), (2) and the set of
feasible solutions of the linear programming problem

©6), (7). So, ifa , for xe X,a € A(x) and v(a)
are known then we can uniquely determine

Ky =

x,a

o

x’a,VXEX,QEA(X) (®)
q.
for which ¥ (s) =y (). In particular, if an optimal

basic solution a*,q* of the linear programming
problem (6), (7) is found, then the optimal stationary
strategy for Markov decision problem can be found

fixing
. 1, if a., >0;
Sx a = . *’
’ 0, if a,=0.
Let s',s"” be arbitrary solutions of the system

(4) where w(s")<w(s"). Then there exist the

corresponding feasible solutions &', @" of the linear
programming problem (6), (7) for which

w(s) =p(a), (s =y,
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| 1 " __ v
a - Sx,a qx" ax,y - Sx,a qx” vx € X’ ae A(x)7

x,a

where ¢.,q,. are determined uniquely from the

system of linear equations (3) for s =" and s =",
respectively. The function ¥ (&) islinearand therefore

for an arbitrary a =00+ (1-0)a",0<0<1 the
following equality holds

@) =0y(a)+(1-0)(a"),
where ¢ is a feasible solution of the problem (6),
(7), that in initial problem (1), (2) corresponds to a

feasible solution s for which

w(s)=y(@); q,=6q,+(1-0)q,,VxeX.
Using (8) we have

Sra =2 Vxe X, ae A(x),
q,

ie.
- gax,u '+(1 - g)ax,a ! agx,a ' qx' + (1 - g)sx,a " qx”
Sxa = = =
bg.+(1-6)q.. bg.+(1-0)q..
qu' s '+ (1 B H)qx” s "

gqx' + (1 - H)qx” e aqx' + (1 - e)qx” e
So, we obtain

Sxa=0Ous, +(1-0.)s, "

x,a 2

where
5)( — qu' ,
qu' + (1 - e)qx”

0<6<1

OSEXSI, were

0=0

It is easy to observe that

0.=0,Vxe X

0.=1,Vxe X

that for an arbitrary S € S(s',s") the condition (5
holds and the equations

if and only if and

if and only if @ =1. This means

w(s)=y(s"), w(s)=w(s")

on the set S(s',s"”) have the unique solutions

s=s" and s=s"", respectively. Thus the function

w(s)

monotone.

on the set of solutions of system (4) is

Now we extend the results described above for
the continuous model of stochastic positional game
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with average payoff functions. We consider the game
model for perfect Markov decision processes.

Let denote by S',ie{l1,2,...m} the set of
solutions of the system

dosi, =1 VxeX';
acA(x)
Z 5,20 Vxe X', ae A(x) ©)
acA(x)
So, ' is a convex compact set and its arbitrary

extreme point corresponds to a basic solution s’ of'the

system (9), where s, ,'€{0,1},Vxe X,,a € A(x)
Thus, if s' is an arbitrary basic solution of system
9),then s'eS'.

Ontheset S=S'xS%*x...xS™ we define m
payoff functions

l//i(sl,sz,...,sm)=zz z yvi‘as;,aqx, i=1,2,...,m, (10)

i=l xeX;aed(x)

where

i _ i a
:ux,a - Zcx,ypx,y

yeX
is the immediate cost of player i€ {1,2,...,m} in

the state x € X forafixed action a € A(x); q, for

x € X are determined uniquely from the following
system of linear equations

DD plsia,=q,, VyeX;

i=1 xeXiaeA(x)

g, =1

xeX (1 1)
when s',s%,...,s™ are given.

The main results we prove for our game model
represent the following properties:

- The set of Nash equilibria situations of the
continuous model is non empty if and only if the set
of Nash equilibria situations of the game in positional
form is not empty;

- If (s',s%,...,8™) is an extreme point of

S then Fl(s'.s*,....s")=w(s',s*, ..., s"),

Vxe X, i=1,2....,m and all Nash equilibria
situations for the continuous game model that

correspond to extreme points in S represent Nash
equilibria situations for the game in positional form.

From Lemma 3 as a corollary we obtain the
following result.
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For perfect Markov processes each payoff

. ir 2 . .
function y'(s',s",...,s"), ie€{i,2,..., m} possesses

—i-1 . =i+l

e S —m
the property that ¥'(s ,s ,...,s 8,8 ,...,5 )

is monotone with respect to s’ €S’ for arbitrary
—k
fixeds €S, k=12,..,i-1i+1,...,m.

Using this lemma we can prove the following

theorem. Let (X, 4,{X,} —,{c'} —,p,x) be
. . i=l,m’ i=1,m .
a stochastic positional game with a given starting

position x € X and average payoff functions
1o, .2 20,1 2 1,2
F (8,8 .,8" ), Fo(s,8 8™ )y, (8,87, 08™)

of players 1,2,...,m, respectively. If for

an arbitrary situation s=(s',s%,...,5") of the

S N
game the transition probability matrix P =(p x,y)
corresponds to a Markov uni-chain then for the stochas-

tic positional game (X, 4,{X;} _—, {ci}i:m, D, X)

* * *

there exists Nash equilibrium s = (s' ,s° ,...,s" )

Moreover, for this game there exists a situation

s =(s",s,..,s™) which is a Nash-equilibrium
for an arbitrary starting position x € X.

Proof. According to Lemma 3 each function

l//i(Sl,Sz,...,Sm),iE{i,2,...,m} satisfies the

—i-l1 - il

i_l -2 ; —m
wi(s ,8 ..., 8 8,8 ,...,8 )

is monotone with respect to s’ € S* for arbitrary

condition that

fixed s €S* k=12, i-1,i+1,....m. In

the considered game each subset S " is convex and
compact. Therefore these conditions (see [2], [1], [11]
and [10]) provide the existence of Nash equilibrium

for the functions w'(s',s,...,s"), i€ {i,2,...,m}
on  S'xS*x..xS".

that S

Taking into  account

is a polyhedron set and the functions
i -1 =2 —i-1 i —i+l —m

v'(s,s ,....,s ,s',8 ,...,s ) are monotone

we obtain that there exists a Nash equilibrium

* * *

s ,8°,...,s" that corresponds to a basic solution

*

of the system (9). This means that (s' ,s°,...,s" )
is Nash equilibrium for the functions

F\,l(sl,s2,...,sm) sz(sl,sz,...,sm) ...,Fxm(sl,sz,...,s'")

on the set of situations S=S'xS*x...xS".
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Using the results described above we may
conclude that in the case of perfect Markov decision
processes Nash equilibrium for stochastic positional
games can be determined by using classical iterative
methods for the continuous game models with payoff

w'(s',s?,...,s"),i€li2,...,m} on

the set S' xS x...xS™ . If we refer these iterative
methods to discrete game model with payoff functions

on S'xS?x...xS™ then we obtain the iterative
procedures where players fix successively their
strategies in order to minimize their payoff functions,
respectively, and finally to reach Nash equilibrium.

In general, for stochastic positional games with
average payoff functions of players, Nash equilibrium
may not exists if the stationary strategies do not generate
Markov uni-chain. Moreover, Nash equilibrium
may not exists even for deterministic positional
games (see [3], [5]). So, the Theorem 3 in the case

functions

Pt ef{0,1}, gives conditions for existence of Nash
equilibria in cyclic games with average payoff
functions.

4. Stochastic Positional Games with Discounted
Payoff Functions of Players

The stochastic positional game model for
discounted Markov decision problem we formulate
in a similar way as the game model from Section 2.
We apply the game-theoretical concept to discounted

Markov decision process (X, 4, p,c) with given

discounted factor 7,0 <y <1 (see [9], [I12]). So,
in for our game model we assume that m transition

i XxX-oR,i=12,...,m,

are given and the set of states X is divided

X, X,,....X,,

cost functions

into m disjoint subsets

where X, represents the positions set of player

ie{l2,...,m}. Thus, the Markov process
is controlled by m players, where each player

ie{l,2,...,m} fixesactionsinhispositions x € X
using stationary strategies. The stationary strategies of
players in this game we define as m maps:

s'ix—>aedlx) for xeX;i=1.2,.

Let s',s%,....,8" be a set of stationary
strategies of players that determine the situation

Ls™).

probability transitions P* = (p; ) which is induced

s=(s',s°, Consider the matrix of
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by the situation s, i.e. each row of this matrix

corresponds to probability distributions Pl in the

state x were x € X,. If the starting state x, is
given, then for the Markov process with the matrix

of probability transitions P° we can determine the

discounted expected total cost O'io (s',s%,...,8"
with respect to each player i€ {l1,2,...,m} taking
into account the corresponding matrix of transition

costs C'=(c! ,)- So, on the set of situations we can
define the payoff functions of the players as follows:

FxO(S,S yeresS )ZO'XO(S,S e 8™), 1=1,2,...,m.

In such a way we obtain a new discrete
noncooperative game in normal form which is

determined by the sets of strategies S',S?,...,S”
of m players and the payoff functions defined above.
In this game we are seeking for a Nash equilibrium.
This game is determined uniquely by the
set of states X, the positions sets X, X,,..., X
the set of actions A, the

i XxX >R, i=12,...,
function p: X xXxA—>[0,1] the discounted
factor y and the starting position x,,. Therefore we
denote it (X, 4,{X;} .., {Ci}i:W, D, Vs X,). We call

this game stochastic positional game with discounted
payoff functions .

cost functions

m,, the probability

5. Determining Nash Equilibria for Stochastic
Positional Games with Discounted Payoff
Functions

In this section we show that Nash equilibrium
exists for an arbitrary stochastic positional game with
discounted payoft functions of the players and given

discounted factor ¥, 0 <y <1. To prove this result
we shall use a continuous game which represent the
game model for the following continuous optimization
problem:

Maximize

0, (05)=0, (12)

subject to

T VD D SeaPey Oy = D Seublyys IXEX

yeXacA(x) acA(x)
z s, =1, Vxe X;

acA(x)

(13)
s.,20, Vxe X,ae A(x),

X,

where

_ a a
= 2PL,cly

yeX
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This problem represents the continuous model
for discounted Markov decision problems (see [7]).
Based on this model we can determine the optimal
stationary strategy of the discounted Markov decision

problem for an arbitrary starting state x € X . In (13)

the system of linear equations with respect to ¢, has
a unique solution and therefore the objective function
(12) on the set of feasible solutions depends only on
s . It is easy to observe that these equations in (13)

can be changed by inequalities (<) . If after that we

dualize (12), (13) with respect to o, for fixed s
then we obtain the following problem:
Minimize

P, ) =2 > p,,s..B.

xeXaeA(x)

(14)

subject to

ﬁy _}/Z Z p,frl,ysx,aﬂx 20’ vyEX\{xo}’

xeXaecA(x)

Bo=r>. D pi,s. B2 for y=x;

xeXaeA(x)
D 5. =1 VxelX;
acA(x)
B, 20 VyeX; s
Using
problem

(15)

,20,Vxe X,ae A(x).
elementary transformations in

this and introducing the notations

ax,a = Sx,sﬂxa Vx e X; ae A(X) we obtain the
following linear programming problem:

X,

Minimize
¢(S’ ﬂ) = z Z ﬂx,a ax,a (16)
xeXaeA(x)
subject to
B=72 2 Pry0, 20, Vye X\ xy;
xeXacA(x)
ﬂy _yz Z p;,yax,a 21 for y:xo;
xeXacA(x)
Y a,, =B, VxeX; (17)
acA(x)
B,20, VyeX; o, ,6>0,Vxe X,ae A(x).

If (", ") is an optimal basic solution of problem

(16), (17) then the optimal stationary strategy s for
the discounted Markov decision problem is determined
as follows:

. 1, if a;a;tO;
Sea 1), (18)

if a,,=0.
and o, =s  f.,VxeX,aeAx).

It is easy to observe that S >0,Vxe X if
for the considered Markov decision process there
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exists an action ge A(x,) such that p,,>0YxeX
Without loss of generality we may assume that
such condition for our problem holds; otherwise

we can add a fictive action a’ in the state X,
for which pi, >0,VyeX (D pi =1)

C::O,y =K,VyeX, where K’is a suitable big
value.

For continuous model of discounted Markov
decision problem we prove a similar properties as
for average Marcov decision model. Let a Markov

and

decision process (X, A, p,c) with discounted factor

7,0 <y <1 be given. Consider the function

wxo (S) = O-xo b
where o, for x € X satisfy the condition

Co=7 D D Sl O, = DS M, YXEX. (19)

yeXacA(x) acA(x)
Then the function @, (s) dependsonlyon s,

for xe X,a € A(x), and on the set S of solutions
of the system

ZSMZI, Vxe X;
acA(x)
Z 5..20,Vxe X,ae A(x)

acA(x)

the function @(s) is monotone. The proof of this
lemma is similar to the proof of Lemma 3.

The continuous game model with m players for
discounted Markov decision problem we formulate as

follow: ontheset S =S'xS?x...xS™ we consider
m payoff functions functions

i 1 2 my __ i s __
¢x0(s 8,8 =0, , i=1,2,...,m,

X0

where o ; for x € X satisfy the conditions

ol —}/Z Z sfﬂ pf__vof, = Z sfﬂyiva, VxeX;i,k=12,...,m;
yeXaeA(x) acA(x)

This game model possesses the same property as
the previous continuous model:

-The set of Nash equilibria situations of the
continuous model is non empty if and only if the set
of Nash equilibria situations of the game in positional
form is not empty;

- If (s',s%,...,s™) is an extreme point of
S then Fau(s's?....s")=o(s', s>, ..., s™),

Vxe X, i=1,2....,m and all Nash equilibria



Matematica

situations for the continuous game model that

correspond to extreme points in S represent Nash
equilibria situations for the game in positional form.
From Lemma 5 as a corollary we obtain the
following result. For an arbitrary discounted
Markov decision process each payoff function

(/))’;0 (s',s%,...,s™), ie{i2,...,m} possesses the

.-l =2 —i-1
property that gD;O (5,8 ,....8

. it —m

n
1 .
,S',8 ,...,8 ) is

monotone with respect to s’ € S’ for arbitrary fixed

—k
s €S*, k=12,...,i-1,i+1,...,m.  Using
this lemma we can prove the following theorem. Let

(X, 44X} s {ci}izm, P, 7, Xx) beastochastic
positional game with a given starting position x € X

and discounted payoff functions
—1 —2 —m
Fo(s s, .08™), Fu(s' s 8™, Fx(s' )87 .,8™)

of players 1,2,...,m, respectively. Then in
the considered game there exists Nash equilibrium

* * 2t * i
s =(s ,8 ,...,s" ). Moreover, in this game there

exists a situation s =(s' ,s* ,....s” ) whichis a
Nash-equilibrium for an arbitrary starting position
x € X . The proof of this theorem is similar to the
proof of Theorem 3.

It is evident that the result described above can be
used for studying and solving stochastic antagonistic
positional games. The corresponding conditions for
existence of saddle points in antagonistic positional
games with average and discounted payoff functions
can be derived from Theorems 3, 5, respectively. The
computational complexity aspects concerned with
determining the optimal stationary strategies of players
for deterministic positional games are analyzed in [5].

6. Conclusion

In this paper a new class of stochastic positional
games that extend the well known deterministic and
stochastic positional games is studied. A new results
concerned with existence of Nash equilibria for the
game models of Markov decision problems with
average and discounted costs optimization criteria
are obtained. Based on these results the problem of
determining the optimal stationary strategies of players
in the considered games can be reduced to continuous
similar problems for which classical numerical
methods can be applied. The described results may be
useful for elaboration of suitable iteration procedures
of determining the optimal stationary strategies in
positional games.
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